p-group, metabelian, nilpotent (class 4), monomial
Aliases: C24.2D4, C23.4D8, C23.4SD16, C23:C8.3C2, (C22xC4).9D4, C22.14C4wrC2, C2.C42:4C4, C2.4(C42:3C4), C23.9D4.3C2, C22.55(C23:C4), C23.11D4.1C2, C2.9(C22.SD16), C2.4(C23.D4), C22.18(D4:C4), C23.155(C22:C4), (C2xC4:C4):2C4, (C22xC4).2(C2xC4), (C2xC22:C4).83C22, SmallGroup(128,76)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.2D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=dc=cd, f2=a, ab=ba, ac=ca, ad=da, eae-1=abcd, af=fa, bc=cb, ebe-1=fbf-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=ace3 >
Subgroups: 228 in 73 conjugacy classes, 20 normal (all characteristic)
C1, C2 [x3], C2 [x4], C4 [x6], C22 [x3], C22 [x9], C8, C2xC4 [x14], C23 [x3], C23 [x4], C22:C4 [x6], C4:C4, C2xC8, C22xC4 [x2], C22xC4 [x3], C24, C2.C42, C2.C42, C22:C8, C2xC22:C4, C2xC22:C4 [x2], C2xC4:C4, C23:C8, C23.9D4, C23.11D4, C24.2D4
Quotients: C1, C2 [x3], C4 [x2], C22, C2xC4, D4 [x2], C22:C4, D8, SD16, C23:C4, D4:C4, C4wrC2, C22.SD16, C23.D4, C42:3C4, C24.2D4
Character table of C24.2D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -1 | i | 1 | 1 | i | -i | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | 1 | -i | -1 | 1 | -i | i | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | 1 | i | -1 | 1 | i | -i | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | -1 | -i | 1 | 1 | -i | i | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 1-i | 0 | -1-i | 0 | 0 | 1+i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4wrC2 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | -1-i | 0 | 1-i | 0 | 0 | -1+i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4wrC2 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | -1+i | 0 | 1+i | 0 | 0 | -1-i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4wrC2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 1+i | 0 | -1+i | 0 | 0 | 1-i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4wrC2 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23:C4 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C42:3C4 |
ρ21 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C42:3C4 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
(2 25)(3 19)(4 9)(6 29)(7 23)(8 13)(11 22)(12 30)(15 18)(16 26)(20 27)(24 31)
(1 28)(2 11)(3 30)(4 13)(5 32)(6 15)(7 26)(8 9)(10 17)(12 19)(14 21)(16 23)(18 29)(20 31)(22 25)(24 27)
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 25)(16 26)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 21)(2 9 25 4)(3 16 19 26)(5 17)(6 13 29 8)(7 12 23 30)(10 14)(11 24 22 31)(15 20 18 27)(28 32)
G:=sub<Sym(32)| (2,25)(3,19)(4,9)(6,29)(7,23)(8,13)(11,22)(12,30)(15,18)(16,26)(20,27)(24,31), (1,28)(2,11)(3,30)(4,13)(5,32)(6,15)(7,26)(8,9)(10,17)(12,19)(14,21)(16,23)(18,29)(20,31)(22,25)(24,27), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21)(2,9,25,4)(3,16,19,26)(5,17)(6,13,29,8)(7,12,23,30)(10,14)(11,24,22,31)(15,20,18,27)(28,32)>;
G:=Group( (2,25)(3,19)(4,9)(6,29)(7,23)(8,13)(11,22)(12,30)(15,18)(16,26)(20,27)(24,31), (1,28)(2,11)(3,30)(4,13)(5,32)(6,15)(7,26)(8,9)(10,17)(12,19)(14,21)(16,23)(18,29)(20,31)(22,25)(24,27), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21)(2,9,25,4)(3,16,19,26)(5,17)(6,13,29,8)(7,12,23,30)(10,14)(11,24,22,31)(15,20,18,27)(28,32) );
G=PermutationGroup([(2,25),(3,19),(4,9),(6,29),(7,23),(8,13),(11,22),(12,30),(15,18),(16,26),(20,27),(24,31)], [(1,28),(2,11),(3,30),(4,13),(5,32),(6,15),(7,26),(8,9),(10,17),(12,19),(14,21),(16,23),(18,29),(20,31),(22,25),(24,27)], [(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,25),(16,26)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,21),(2,9,25,4),(3,16,19,26),(5,17),(6,13,29,8),(7,12,23,30),(10,14),(11,24,22,31),(15,20,18,27),(28,32)])
Matrix representation of C24.2D4 ►in GL6(F17)
1 | 0 | 0 | 0 | 0 | 0 |
9 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
2 | 9 | 0 | 0 | 0 | 0 |
0 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 2 | 2 | 15 |
0 | 0 | 15 | 15 | 2 | 15 |
0 | 0 | 2 | 15 | 2 | 2 |
0 | 0 | 2 | 15 | 15 | 15 |
16 | 0 | 0 | 0 | 0 | 0 |
5 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,9,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[2,0,0,0,0,0,9,15,0,0,0,0,0,0,2,15,2,2,0,0,2,15,15,15,0,0,2,2,2,15,0,0,15,15,2,15],[16,5,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0] >;
C24.2D4 in GAP, Magma, Sage, TeX
C_2^4._2D_4
% in TeX
G:=Group("C2^4.2D4");
// GroupNames label
G:=SmallGroup(128,76);
// by ID
G=gap.SmallGroup(128,76);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,387,184,794,521,2804]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d*c=c*d,f^2=a,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c*d,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=a*c*e^3>;
// generators/relations